Here is how to fetch data from MySQL table into Pandas data feed. In the code below, make sure to change the following variables to match your settings:
- host
- username
- password
- db_name
- sql_query
#!/usr/bin/python3 import mysql.connector import pandas as df import pandas.io.sql as psql # Get MySQL connection. host="localhost" username="root2" password="password" db_name="test_db_name" connection = mysql.connector.connect( host=host, user=username, passwd=password, database=db_name ) # Fetch data into pandas. sql_query = "SELECT * FROM Price LIMIT 10" df = psql.read_sql(sql_query, connection) print(df)
Output
ticker_id date open low high close adj_close volume 0 1 1962-01-02 71.550003 70.709999 71.959999 70.959999 70.959999 3120000 1 1 1962-01-03 70.959999 70.379997 71.480003 71.129997 71.129997 3590000 2 1 1962-01-04 71.129997 70.449997 71.620003 70.639999 70.639999 4450000 3 1 1962-01-05 70.639999 69.349998 70.839996 69.660004 69.660004 4630000 4 1 1962-01-08 69.660004 68.169998 69.839996 69.120003 69.120003 4620000 5 1 1962-01-09 69.120003 68.830002 69.930000 69.150002 69.150002 3600000 6 1 1962-01-10 69.150002 68.620003 69.580002 68.959999 68.959999 3300000 7 1 1962-01-11 68.959999 68.570000 69.540001 69.370003 69.370003 3390000 8 1 1962-01-12 69.370003 69.230003 70.169998 69.610001 69.610001 3730000 9 1 1962-01-15 69.610001 69.059998 69.959999 69.470001 69.470001 3450000