# Import import numpy as np # Slicing narray sma_x = sma_x[4:] # Skip 1st 4 due to period=5. # Slicing. a = np.array([1,2]) # [x,y] b = np.array([3,5]) # [x,y] p1 = np.array([2,4]) # [x,y] p2 = np.array([2,3]) # [x,y] data_points = np.array([a,b]) # Add points: (1,2) , (3,5) data_points_x = data_points[:,0] # For every point, get 1st value, which is x. data_points_y = data_points[:,1] # For every point, get 2nd value, which is y. print(data_points_y) # [2, 5] # Copy values from list of indexes arr = np.array([100.10, 200.42, 4.14, 89.00, 34.55, 1.12]) arr[ [1,4,5] ] # Get indexes: 1,4,5. #[ 200.42, 34.55, 1.12] # Create a range. xs = np.arange(start = 1, stop = 10, step = 1, dtype='int') print(xs.dtype) # int64 # Reshape np.arange(start = 1, stop = 10, step = 1).reshape((3,3)) [ [1 2 3] [4 5 6] [7 8 9] ] # Generate random numbers. # Positive integer only. There is no randfloat(). np.random.randint(low=1,high=100,size=(4,4),dtype='int') # Random float. np.random.random(12) # Random distribution include negative number. np.random.normal(loc = 0, scale = 1, size = 10) # Return an array of 10 rnd. np.random.normal(loc = 0, scale = 1, size = (3,3)) # Return 3 by 3 array. np.absolute() to convert to positive. # Generate evenly spaced numbers over a specified interval. np.linspace(0, 100, num=5, dtype='int') # [ 0 25 50 75 100] np.linspace(0, 100, num=5, dtype='float') # [ 0. 25. 50. 75. 100.] # Not a number(nan) narray = np.array([1.0,2.0,3.0]) narray[1] = np.nan # Set 2.0 as Not a Number(nan) for value in narray: if np.isnan(value): # Can also use math.isnan() v2.6+ print(value, "is not a number.") else: print(value, "is a number.")